Adverse Event Prediction Using Graph-Augmented Temporal Analysis

Sandia National Laboratories

Randy Brost, Vitus Leung, Hamilton Link, Cindy Phillips, Andrea Staid Sandia National Laboratories, Albuquerque, NM 87185

Problem

- Data streams are voluminous and complex.
- Hard to understand event chains leading up to events.
- Prior work: Spatiotemporal search for specified patterns.
- This project seeks to find unknown temporal relationships.

Approach

Find precursors via temporal and graph analysis.

A domain has multiple data streams logged at various points. Temporal analysis identifies potential correlations, which are either reinforced or deprecated by graph information.

Example Problems:

1. Dengue Fever Outbreaks:

Data: Dengue cases, weather... Goal: What precedes an outbreak?

Bayesian MCMC Model

Method: Construct Bayesian model relating context, weather, and Dengue cases. Characterize priors via Monte Carlo analysis. Find parameters connected to outbreaks.

2. Wind Power Analysis:

Data: Wind power forecast, actual... Goal: Can we predict forecast errors?

Forecast Shift Analysis

Method: Identify adjustments to forecast based on recent, local actual performance.

3. Network Analysis:

Data: Pizza events, network traffic. Goal: Who orders the pizza?

Ripley's K Function

temporal data that deviate from random.

Results

Result: Model fit captures seasonal variation, out-of-normal outbreaks. Next: Assess environmental influence, real-time prediction.

2. Wind Forecast Improvement:

Result: Shift algorithm improved forecast accuracy by 9,873 MWh/year (5.1%). Next: Improved algorithms, geographic coupling.

3. Network Precursor Analysis (synthetic data):

Result: Modified K-function analysis found precursor network traffic within pure synthetic noise, given prefect precursor lead time. Next: Add variable lead time, noise, real data. Seek robust method.

Significance

Potential impact:

- New algorithms for solving spatiotemporal analysis problems.
- Supports forensics, warning, relationship identification.
- Multiple potential national security applications.

